T-Kurs Mathematik

Aufgabe 1:

1.1: Berechnen Sie explizit die gesuchten Darstellungen:

$$(3503)_{10} = (?)_{16}$$

 $(1010011)_2 = (?)_8$

1.2: Berechnen Sie mit Hilfe des Euklidischen Algorithmus den größten gemeinsamen Teiler der Zahlen

Fertigen Sie eine Tabelle mit allen Zwischenwerten an!

1.3: Zeigen Sie mit vollständiger Induktion:

n Î IN o; Jede n - elementige Menge besitzt 2 n Teilmengen.

Aufgabe 2:

Gegeben ist die Funktionenschar $f_t: IR \ \ \mathbb{R}$ IR mit

$$f_t(x) = t \times (x-t)^2 \times e^{-(x-t)^2}$$

- 2.1: Diskutieren Sie die Funktionen in Abhängigkeit vom Scharparameter tÎIR (1., 2. und 3. Ableitung, Nullstellen von f, f ′, f ′′, Extremwerte, Wendepunkte) und zeichnen Sie den Graphen ^Gft für den Parameter t = 5 in ein Koordinatensystem! [-2 ≤ x ≤ +10]

Aufgabe 3:

Gegeben ist die abschnittsweise definierte Funktion $f_{a,b,c}$: IR ® IR mit

$$f_{a,b,c} = \begin{cases} a \cdot x^2 + b \cdot x + c & fill & x < -1 \\ 0 & fill & x = -1 \\ x^3 - x & fill & x > -1 \end{cases}$$

Bestimmen Sie die reellen Zahlen a, b und c, so daß

- (1) $f_{a,b,c}$ an der Stelle $x_0 = -1$ stetig ist,
- (2) $f_{a,b,c}$ an der Stelle $x_0 = -1$ differenzierbar ist und
- (3) $f_{a,b,c}$ eine Nullstelle an der Stelle $x_1 = -2$ hat!

Aufgabe 4:

Gegeben sind die folgenden Funktionen:

1.)
$$f_1(x) = x \times |x|$$

2.)
$$f_2(x) = x \cdot \sqrt{1 + x^2}$$

3.)
$$f_3(x) = e^x - e^{-x}$$

4.1: Beweisen Sie: f_1 , f_2 und f_3 sind umkehrbar!

4.2: Bestimmen Sie für eine der drei Funktionen den Funktions<u>term</u> der Umkehrfunktion [f_1^{-1} oder f_2^{-1} oder f_3^{-1}]!

Aufgabe 5:

Im affinen Raum IR ³ sind der Punkt P (6 ½ 0 ½ 8) und die Ebene

$$e_1: 6 \times x - 6 \times y + 3 \times z - 9 = 0$$

gegeben.

- **5.1:** Geben Sie eine Gleichung der Ebene e 2 an, die den Punkt P enthält und parallel zur Ebene e 1 ist!
- 5.2: Geben Sie eine Gleichung der Geraden g an, die auf der Ebene e 1 senkrecht steht und durch den Punkt P geht!
- **<u>5.3:</u>** Berechnen Sie die Koordinaten des Schnittpunktes S der Geraden g mit der Ebene e₁!
- 5.4: Berechnen Sie den Abstand d zwischen den Punkten P und S!